High order fixed-point sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence study

نویسندگان

  • Liang Wu
  • Yong-Tao Zhang
  • Shuhai Zhang
  • Chi-Wang Shu
چکیده

Fixed-point iterative sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweeping order. Different from other fast sweeping methods, fixed-point iterative sweeping methods have the advantages such as that they have explicit forms and do not involve inverse operation of nonlinear local systems. In principle, it can be applied in solving very general equations using any monotone numerical fluxes and high order approximations easily. In this paper, based on the recently developed fifth order WENO schemes which improve the convergence of the classical WENO schemes by removing slight post-shock oscillations, we design fifth order fixed-point sweeping WENO methods for efficient computation of steady state solution of hyperbolic conservation laws. Especially, we show that although the methods do not have linear computational complexity, they converge to steady state solutions much faster than regular time-marching approach by stability improvement for high order schemes with a forward Euler time-marching.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-point Fast Sweeping Weno Methods for Steady State Solution of Scalar Hyperbolic Conservation Laws

Fast sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilize the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamil...

متن کامل

Lax-Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws

Fast sweeping methods are efficient Gauss–Seidel iterative numerical schemes originally designed for solving static Hamilton–Jacobi equations. Recently, these methods have been applied to solve hyperbolic conservation laws with source terms. In this paper, we propose Lax–Friedrichs fast sweeping multigrid methods which allow even more efficient calculations of viscosity solutions of stationary ...

متن کامل

High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...

متن کامل

An implicit WENO scheme for steady-state computation of scalar hyperbolic equations

Weighted essentially non-oscillatory (WENO) schemes have proved useful in a variety of physical applications. They capture sharp gradients without smearing, and feature high order of accuracy along with nonlinear stability. The high order of accuracy, robustness, and smooth numerical uxes of the WENO schemes make them ideal for use with Jacobian based iterative solvers, to directly simulate the...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015